DNMT1-PPARγ pathway in macrophages regulates chronic inflammation and atherosclerosis development in mice
نویسندگان
چکیده
The DNA methyltransferase-mediated proinflammatory activation of macrophages is causally linked to the development of atherosclerosis (AS). However, the role of DNMT1, a DNA methylation maintenance enzyme, in macrophage polarization and AS development remains obscure. Here, we established transgenic mice with macrophage-specific overexpression of DNMT1 (Tg(DNMT1)) or PPAR-γ (Tg(PPAR-γ)) to investigate their effects on AS progression in ApoE-knockout mice fed an atherogenic diet. Primary macrophages were extracted to study the role of the DNMT1/PPAR-γ pathway in regulating inflammatory cytokine production. We demonstrated that Tg(DNMT1) significantly increased proinflammatory cytokine production in macrophages and plasma, and it accelerated the progression of AS in the atherogenic diet-treated ApoE-knockout mice. Further, we found that the DNA methylation status of the proximal PPAR-γ promoter was regulated by DNMT1 in macrophages. Notably, additional Tg(PPAR-γ) or pharmacological activation of PPAR-γ effectively prevented Tg(DNMT1)-induced proinflammatory cytokine production in macrophages and AS development in the mouse model. Finally, we demonstrated that elevated DNMT1 was correlated with decreased PPAR-γ, and increased proinflammatory cytokine production in the peripheral blood monocytes isolated from the patients with AS, compared to those of healthy donors. Our findings shed light on a novel strategy for the prevention and therapy of AS.
منابع مشابه
miR-320 regulates inflammation in EAE through interference with TGF-β signaling pathway
Background: MicroRNAs are small noncoding RNAs that regulate gene expression and involve in many cellular and physiological mechanisems. Recent studies have revealed that dysregulation of microRNAs might contribute to autoimmune disorders such as multiple sclerosis. Based on these findings, we examined the potential role of miR-320 isoforms, miR-320-3p and miR-320-5p, in the context of autoimmu...
متن کاملPeroxisome Proliferator-activated Receptor Gamma (pparγ)- Induces Apoptosis and Inhibits Autophagy of Human Monocyte- Derived Macrophages via Induction of Cathepsin L: Potential Role in Atherosclerosis
Macrophages play a pivotal role in the pathophysiology of atherosclerosis. These cells express cathepsin L (CatL), a cysteine protease that has been implicated in atherogenesis and the associated arterial remodeling. In addition, macrophages highly express peroxisome proliferator-activated receptor gamma (PPARγ), a transcription factor that regulates numerous genes important for lipid and lipop...
متن کاملO-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کاملC1q/Tumor necrosis factor-related protein-3 protects macrophages against LPS-induced lipid accumulation, inflammation and phenotype transition via PPARγ and TLR4-mediated pathways
Macrophage inflammation and foam cell formation are critical events during the initiation and development of atherosclerosis (AS). C1q/tumor necrosis factor-related protein-3 (CTRP3) is a novel adipokine with anti-inflammatory and cardioprotection properties; however, little is known regarding the influence of CTRP3 on AS. As macrophages play a key role in AS, this study investigated the effect...
متن کاملQuercetin increases macrophage cholesterol efflux to inhibit foam cell formation through activating PPARγ-ABCA1 pathway.
The accumulation of cholesterol in macrophages could induce the formation of foam cells and increase the risk of developing atherosclerosis. We wonder if quercetin, one of flavonoids with anti-inflammation functions in different cell types, could elevate the development of foam cells formation in atherosclerosis. We treated foam cells derived from oxLDL induced THP-1 cells with quercetin, and e...
متن کامل